Antimicrobial Resistant Bacteria in Health Care Facilities: Exploring Links With Water, Sanitation, and Hygiene in Gaza, Palestine

Reem Abushomar1*, MPH; Mark Zeitoun2*; Ghassan Abu Sittah3*; Antoine Abu Fayad4*; Aula Abbara5*; Nassim El Achi6; Abdelraouf Elmanama7

1Joint PhD Program, Islamic University of Gaza and Al Azhar University, Gaza, Occupied Palestinian Territory
2Water Security Research Centre, University of East Anglia, Norwich, United Kingdom
3Conflict Medicine Program, Global Health Institute, American University of Beirut, Beirut, Lebanon
4American University of Beirut, Beirut, Lebanon
5Department of Infection, Imperial College, London, United Kingdom
6School of Geography and the Environment, University of Oxford, Oxford, United Kingdom
7Islamic University of Gaza, Gaza, Occupied Palestinian Territory
* these authors contributed equally

Corresponding Author:
Reem Abushomar, MPH
Joint PhD Program
Islamic University of Gaza and Al Azhar University
Al Remal
Gaza, 860
Occupied Palestinian Territory
Phone: 970 597912917
Email: reemabushomar@gmail.com

Abstract

Background: Antimicrobial resistance (AMR) is a growing global phenomenon; however, its link to water, sanitation, and hygiene (WASH) remains underexplored, particularly in health care facilities where humanitarian crises prevail.

Objective: This study aimed to identify AMR bacteria in samples collected from WASH services in 2 hospitals in Gaza and to investigate the presence of AMR genes.

Methods: A hospital-based cross-sectional study to detect and identify antimicrobial resistance bacteria was conducted. Random samples from water, wastewater, soap, and surface swabs (n=345) were collected from Al-Shifa and European Gaza hospitals and screened for the presence of Enterobacteriaceae, Pseudomonas, Enterococcus, and Staphylococcus aureus. Antimicrobial susceptibility, extended spectrum beta-lactamase (ESBL) production, carbapenem resistance, and AMR genes were investigated.

Results: High levels of bacterial contamination were detected in water and surface swab samples with an overall percentage of 34.1%. Moreover, 22% of the identified Enterobacteriaceae was positive for ESBL, and 14% was positive for modified Hodge test. Over 2/3 of isolated Enterobacteriaceae in water and wastewater samples was found to be resistant to amikacin, ceftazidime, ceftriaxone, and imipenem. All Enterobacteriaceae isolates from swab samples were found to be resistant to piperacillin-tazobactam, amikacin, ceftazidime, and ceftriaxone; 13.8% of S. aureus in water samples was methicillin resistant. The prevalence of ESBL genes among Enterobacteriaceae isolates was 25% OXA, 19.4% SHV, 2.8% KPC, 66.7% TEM, 41.7% blaCTXM, and 5.6% blaCTXM-3. For carbapenem-resistant gene (MDM), the prevalence among Enterobacteriaceae was 11.1%, and among Pseudomonas was 12.5%. The antibiotic susceptibility profile was also presented for Pseudomonas, Enterococcus, and S. aureus.

Conclusions: The results underline the level of contamination with AMR bacteria in WASH samples and highlight the need to consider the safety of WASH service at health care facilities as an essential aspect in the fight against the spread of AMR and to interrupt nosocomial transmission.

(iproc 2022;8(1):e37246) doi: 10.2196/37246

KEYWORDS
antimicrobial resistant bacteria; antimicrobial resistance genes; health care facilities; wastewater; water; sanitation; hygiene; WASH
Multimedia Appendix 1
Potential transmission of antimicrobial resistant bacteria.
[PNG File , 138 KB-Multimedia Appendix 1]